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Phase transitions that result in incommensurate structural modulations are

widely observed in crystalline solids and are relevant to a broad range of

physical phenomena in magnetic, electronic, optical and structural materials.

While the (3+1)-dimensional superspace-group symmetries associated with one-

dimensional modulations have been tabulated, the order parameters that

produce these modulations have not been explored in detail. Here, using group-

theoretical methods, we present a unique and exhaustive enumeration of the

isotropy subgroups (and their corresponding order-parameter directions)

belonging to irreducible representations of the (3+1)-dimensional superspace

extensions of the 230 crystallographic space groups at all incommensurate

k points. The vast majority of experimentally observed incommensurately

modulated structures have order parameters belonging to one of these

subgroups.

1. Introduction

Over the years, the study of structural phase transitions in

crystalline solids has greatly benefited from group-theoretical

methods (Bradley & Cracknell, 1972; Birman, 1978; Toledano

& Toledano, 1987; Kovalev, 1993; Janssen et al., 2004; Howard

& Stokes, 2005). In the largest class of these transitions, we

observe the onset of some distortion which lowers the

symmetry of a parent phase. In this paper, we use the word

‘distortion’ in a general sense to represent any physical order

parameter that lowers the symmetry of the parent phase.

Distortions can involve not only atomic displacements but also

site occupation, electron density and magnetic spin, for

example. When the symmetries of the parent and distorted

phases have a group–subgroup relationship, the distortion can

be classified as belonging to one or more irreducible repre-

sentations (IRs) of the space-group symmetry of the parent

phase.

This classification gives us predictive power. Given one or

more IRs of a space group, we can use group-theoretical

methods to calculate the possible subgroup symmetries that

can arise from distortions belonging to those IRs. The

symmetries of these distorted structures are called isotropy

subgroups. For a given set of IRs, the complete list of possible

isotropy subgroups is finite.

Order parameters are vectors in representation space and

determine the distortions that arise in a phase transition. The

direction of the order parameter determines the symmetry of

the distortion and thus determines the isotropy subgroup

symmetry. For multidimensional IRs, there is a many-to-one

correspondence between directions of order parameters and

isotropy subgroup symmetries. For each isotropy subgroup

symmetry, there is a continuous range of directions of the

order parameter that produce distortions with that symmetry.

About 20 years ago, Stokes & Hatch (1988) implemented an

algorithm for generating isotropy subgroups and their corre-

sponding order-parameter directions and published a

complete list of isotropy subgroups for all IRs associated with

special k vectors (k points of symmetry) for each of the 230

crystallographic space groups. Subsequently, the ISOTROPY

computer program was created (available over the internet,

see Stokes & Hatch, 1998). ISOTROPY can find the isotropy

subgroups for IRs associated with non-special k vectors having

rational components (i.e. general commensurate k vectors)

and for coupled IRs that appear simultaneously in a transition.

All of these isotropy subgroups describe transitions to struc-

tures that are commensurate with the parent phase.

Perez-Mato et al. (1984a,b) and Janssen & Janner (1984)

demonstrated how to apply group-theoretical methods to

phase transitions which produce modulations that are

incommensurate with the periodicity of the parent phase.

Incommensurate modulations belong to IRs associated with

k vectors having irrational components. We have extended the

method of Perez-Mato et al. and have developed a general

algorithm for generating the isotropy subgroups, and their

corresponding order-parameter directions, for such IRs. The

method described here is limited to structures with one-

dimensional incommensurate modulations but may be easily

extended to the higher-dimensional cases.

We have implemented this algorithm on computer and have

tabulated 7799 isotropy subgroups and their corresponding

order-parameter directions for the 5508 IRs of the (3+1)-

dimensional superspace extensions of the 230 crystallographic

space groups associated with irrational k vectors. This table is



available on the internet (Stokes et al., 2007) and will hereafter

be referred to by the name ISO(3+1)D. The scope of this table

is limited to one-dimensional incommensurate modulations

arising from single uncoupled IRs.

While the present discussion aims to describe and illustrate

the group-theoretical methods used to generate the

ISO(3+1)D tables, the tables themselves are still useful to

those who are not interested in the underlying methods, as

illustrated by the examples in x4.

2. Background

We first review some principles of IRs, order parameters,

isotropy subgroups and superspace groups essential for

understanding our algorithm.

2.1. IRs of three-dimensional space groups

IRs of a three-dimensional crystallographic space group G

are induced from IRs of Gk, the little group of k. This is what is

meant by the IR being associated with a k vector. Gk is a

subgroup of G that consists of all symmetry operators of G

which contain point operators that take k into itself (modulo a

reciprocal-lattice vector K). Following the treatment of

Bradley & Cracknell (1972), we factorize G into left cosets

with respect to Gk so that

G ¼
P

i

giGk; ð1Þ

where gi are coset representatives (reps). We choose g1 to be

the identity operator so that the first coset is simply Gk itself.

Let DðgÞ denote the N-dimensional matrix onto which an

IR � maps symmetry operators g of the parent space group G

and let DkðgÞ denote the Nk-dimensional matrix onto which an

IR �k maps symmetry operators of Gk, the little group of k.

Then the matrices DðgÞ are induced from the matrices DkðgÞ:

DðgÞij ¼ MijDkðgigg�1
j Þ; ð2Þ

where Mij ¼ 1 if gigg�1
j is in Gk and zero otherwise. The

subscripts i; j refer to blocks of Nk-dimensional matrices

within DðgÞ. Each allowed IR of Gk induces an IR of G.

Since we are considering physical distortions, we need real-

valued matrices. Generally, the matrices obtained from

equation (2) are complex. In the case of type-1 IRs, the

matrices DðgÞ are brought to a real form with a similarity

transformation, DRðgÞ ¼ SDðgÞS�1. In the case of type-2 and

type-3 IRs, a physically irreducible representation is formed

from a direct sum of DðgÞ and its complex conjugate which is

then brought to real form with a similarity transformation.

2.2. Isotropy subgroups and order parameters

An IR induces distortions which can be decomposed into

sets f�ig which transform like basis functions of that IR, i.e. in

representation space, a space-group operator g acting on one

element in the set results in a linear combination of elements

in the set given by

g�i ¼
PN
j¼1

�jDðgÞji: ð3Þ

When we say that the distortion arising in a phase transition

‘belongs’ to an IR, we mean that the distortion is some linear

combination of distortions �i that transform like basis func-

tions of that IR:

� ¼
PN
i¼1

�i�i: ð4Þ

The coefficients �i are components of an N-dimensional vector

g called the order-parameter direction.

When a space-group operator g acts on the total distortion

�, we obtain

g� ¼
PN
i¼1

�i

PN
j¼1

DðgÞij�j: ð5Þ

Comparing equations (4) and (5), we see that the operator g

will leave the distortion invariant (g� ¼ �) if

�i ¼
PN
j¼1

DðgÞij�j: ð6Þ

The symmetry group of the distortion will contain all opera-

tors g which satisfy this equation. This collection of operators

g is the isotropy subgroup. If we diagonalize DðgÞ, we can see

from equation (6) that an isotropy subgroup can only contain

operators which map onto matrices DðgÞ with at least one

eigenvalue equal to 1.

Isotropy subgroups can be generated without reference to

order parameters by testing subgroups G0 of G with the

following two rules (Birman, 1978; Jaric, 1981, 1982).

(I) Subduction rule. The subduction frequency must be non-

zero:

iðG0Þ ¼
1

jG0j

X
g2G0

�ðgÞ 6¼ 0; ð7Þ

where �ðgÞ is the character of DðgÞ. In practice, the sum is

taken over operators g 2 G0 that are mapped onto distinct

matrices DðgÞ, and jG0j is the number of those distinct

matrices.

(II) Chain rule. We require that iðG0Þ> iðG00Þ for all isotropy

subgroups G00 which are supergroups of G0.

We first find isotropy subgroups using the subduction and

chain rules, and then obtain the corresponding order-param-

eter directions by solving sets of simultaneous equations for

the components of g. We obtain N equations like equation (6)

for each generator of the isotropy subgroup. The solution to

these equations yields relationships between the components

of g and thereby restrict the order-parameter direction to a

specific invariant subspace of representation space. Any

physical distortion � from equation (4) with a direction of g
thus restricted will possess the symmetry of the corresponding

isotropy subgroup.
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2.3. Superspace groups

In a phase transition to an incommensurately modulated

structure, three-dimensional translational symmetry is lost. A

translation n of the lattice in the parent phase causes a phase

shift k � n in the modulation. If the phase shift is irrational, the

structure has no translational symmetry in the direction of n,

so that its symmetry cannot be described by a crystallographic

space group. In such a case, the symmetry of the structure is

best described (in the case of one-dimensional modulations)

by a (3+1)-dimensional superspace group (Janssen et al.,

2004), where translations along the axis in the fourth dimen-

sion (called the t axis) correspond to phase shifts of the

modulation. Because a translation �k � n along the t axis

corresponds to a phase shift which undoes the phase shift

caused by the translation n, the combined (3+1)-dimensional

translation ðn;�k � nÞ in superspace is a symmetry operator of

the modulated structure. Thus, in superspace, modulated

structures still have translational symmetry.

Following Janssen et al. (2004), we denote an operator in

superspace by ~gg ¼ fðR; "Þjðv;�Þg, where the three-dimen-

sional part fRjvg is a point operation R followed by a trans-

lation v, and the part in the fourth dimension f"j�g is a point

operation " (which operates on the t coordinate) followed by a

translation � along the t axis. [Here, g refers to operators in

three-dimensional space, and ~gg refers to operators in (3+1)-

dimensional space.] It is convenient to write the full (3+1)-

dimensional operator as an affine transformation matrix Að~ggÞ
which operates on a position vector x,

Að~ggÞx ¼

R11 R12 R13 0 v1

R21 R22 R23 0 v3

R31 R32 R33 0 v3

0 0 0 " �
0 0 0 0 1

0
BBBB@

1
CCCCA

x

y

z

t

1

0
BBBB@

1
CCCCA: ð8Þ

We define basis vectors of the superspace lattice,

a1 ¼ ða;�k � aÞ;

a2 ¼ ðb;�k � bÞ;

a3 ¼ ðc;�k � cÞ;

a4 ¼ ð0; 1Þ;

ð9Þ

and a position in superspace as x1a1 þ x2a2 þ x3a3 þ x4a4. By

changing from x; y; z; t to x1; x2; x3; x4 coordinates, equation

(8) becomes

Að~ggÞx ¼

R11 R12 R13 0 v1

R21 R22 R23 0 v2

R31 R32 R33 0 v3

M1 M2 M3 " �
0 0 0 0 1

0
BBBB@

1
CCCCA

x1

x2

x3

x4

1

0
BBBB@

1
CCCCA; ð10Þ

where

Mi ¼ �"ki þ
P

j

kjRji ð11Þ

and

� ¼ �þ
P

i

kivi: ð12Þ

The requirement that point operations on lattice vectors must

result in a lattice vector demands that the values of Mi in

equation (11) be integers. Thus, the superspace group may

only contain point operators that take k into either (i) k itself

(modulo a reciprocal-lattice vector K) in which case " ¼ 1, or

(ii) �k (modulo K) in which case " ¼ �1.

Two superspace groups ~GG1 and ~GG2 are equivalent if there

exists a one-to-one correspondence ~gg2i $ ~gg1i between opera-

tors in ~GG1 and ~GG2 such that

A2ð~gg2iÞ ¼ S�1A1ð~gg1iÞS; ð13Þ

where A1 and A2 are affine transformation matrices of the

form in equation (10) and S is an affine similarity transfor-

mation matrix,

S ¼

SR;11 SR;12 SR;13 0 Sv1

SR;21 SR;22 SR;23 0 Sv2

SR;31 SR;32 SR;33 0 Sv3

SM1 SM2 SM3 S" S�
0 0 0 0 1

0
BBBB@

1
CCCCA; ð14Þ

such that SR, SM and S" contain only integer elements. The

basis vectors a2i of the lattice in G2 are given in terms of the

basis vectors a1i of the lattice in G1 by

a2i ¼
P4

j¼1

a1jSji; ð15Þ

and the position of the origin � of G2 with respect to G1 is

given by

� ¼
P4

j¼1

a1jSj5: ð16Þ

3. Incommensurate modulations

We next consider the ways we deal with IRs and isotropy

subgroups when the k vector is irrational and the isotropy

subgroup must have superspace-group symmetry. In order for

superspace groups to be subgroups of the parent group, we

must first extend the parent group to include translations

along the t axis in superspace. Since the modulation amplitude

is zero in the parent phase, such translations along the t axis

are symmetry operators of the parent phase.

Therefore, we define

~GG ¼ G� E1ð�Þ; ð17Þ

where E1ð�Þ is the one-dimensional Euclidean group of all

translations � along the t axis. [As in the previous section, G

refers to a group of operators in three-dimensional space, and
~GG refers to a group of operators in (3+1)-dimensional super-

space.]

3.1. IRs and isotropy subgroups

For an incommensurate modulation in the direction of k,

the resulting superspace symmetry can only contain point

operators that take k into �k. In order to generate the
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isotropy subgroups of ~GG that lead to incommensurate modu-

lations, we find it useful to first identify a suitable subset of ~GG
that contains only these operators. We will first consider the

analogous subset of the three-dimensional space group G, and

then extend the results to ~GG.

In equation (1), the first coset is Gk which contains all of the

operators in G that take k into k itself. Suppose that one of the

coset reps gi contains a point operator that takes k into�k. We

denote this coset rep by g �kk. (When no such coset rep exists, the

following discussion is greatly simplified.) The coset g �kkGk then

contains all of the operators in G which take k into �k. We

construct a group Gk �kk which contains only the operators in

these two cosets:

Gk �kk ¼ Gk þ g �kkG: ð18Þ

IR matrices Dk �kkðgÞ for operators g in Gk �kk are easily obtained

from equation (2) by truncating the matrices DðgÞ to include

only the indices i; j for the cosets Gk and g �kkGk. The resulting

matrices Dk �kkðgÞ are 2Nk-dimensional.

If g is in Gk, the matrix Dk �kkðgÞ has the form

Dk �kkðgÞ ¼
D11 0

0 D22

� �
; ð19Þ

where D11 and D22 are Nk-dimensional matrices and 0 is the

Nk-dimensional zero matrix. In particular, if g is a lattice

translation,

Dk �kkðfEjngÞ ¼
1 expði2�k � nÞ 0

0 1 expð�i2�k � nÞ

� �
; ð20Þ

where 1 is the Nk-dimensional identity matrix. If g is in g �kkGk,

the matrix Dk �kkðgÞ has the form

Dk �kkðfRjvgÞ ¼
0 D12

D21 0

� �
: ð21Þ

We now extend the above treatment to include translations

along the t axis so that equation (18) becomes

~GGk �kk ¼
~GGk þ ~gg �kk

~GGk: ð22Þ

The IR matrices ~DDk �kkð~ggÞ for ~gg in ~GGk �kk are simply obtained from

~DDk �kk½fðR; "Þjðv;�Þg� ¼ ~DDk �kk½fðE; 1Þjð0;�Þg�Dk �kkðfRjvgÞ; ð23Þ

where, from Perez-Mato et al. (1984a,b),

~DDk �kk½fðE; 1Þjð0;�Þg� ¼
1 expði2��Þ 0

0 1 expð�i2��Þ

� �
:

ð24Þ

From these equations, we obtain

~DDk �kk½fðE; 1Þjðn;�k � nÞg� ¼
1 0

0 1

� �
; ð25Þ

as expected.

Phase transitions to structures with modulation vector k will

have the symmetries of isotropy subgroups of ~GGk �kk. Our task is

to find the isotropy subgroups of ~GGk �kk. Since ~GGk �kk contains an

infinite number of operators, it is not practical to find the

isotropy subgroups by applying the subduction and chain rules

to every subgroup of ~GGk �kk. We must somehow limit the number

of subgroups to try.

3.2. Translations

From equation (25), we see that every IR maps the lattice

translations ðn;�k � nÞ onto identity matrices. Therefore,

these same lattice translations appear in every isotropy

subgroup. The collection of all such lattice translations forms a

translation group which we denote by ~TT.

We now determine which translations � along the t axis can

appear in isotropy subgroups. An operator ~gg can be a member

of an isotropy subgroup only if at least one of the eigenvalues

of ~DDk �kkð~ggÞ is equal to 1. Let us denote these operators as being

‘eligible’. Consider an operator ~gg 2 ~GGk. Combining equations

(19) and (24), we find that matrix ~DDk �kkð~ggÞ has the form

~DDk �kk½fðR; 1Þjðv;�Þg� ¼
D11 expði2��Þ 0

0 D22 expð�i2��Þ

� �
;

ð26Þ

where the matrices D11 and D22 are the diagonal elements of

Dk �kkðfRjvgÞ. The eligible operators are therefore those for

which expð�i2��Þ is equal to one of the eigenvalues of D11 or

expði2��Þ is equal to one of the eigenvalues of D22. This limits

us to a finite number of possible values for �.

Next consider an operator ~gg 2 ~gg �kk
~GGk. From equations (21)

and (24), we find that the matrix ~DDk �kkð~ggÞ has the form

~DDk �kk½fðR;�1Þjðv;�Þg� ¼
0 D12 expði2��Þ

D21 expð�i2��Þ 0

� �
;

ð27Þ

which can be written in the form

S
0 D12

D21 0

� �
S�1; ð28Þ

where

S ¼
1 expði��Þ 0

0 1 expð�i��Þ

� �
: ð29Þ

Because a similarity transformation does not change the

eigenvalues of a matrix, if Dk �kkðfRjvgÞ contains at least one

eigenvalue equal to 1, then so will ~DDk �kkðfðR;�1Þjðv;�ÞgÞ for

any value of �. Let ~TT� be the translation group containing

operators fðE; 1Þjð0;�Þg for all possible values of �. Factor-

izing ~gg �kk
~GGk into left cosets with respect to ~TT�, we obtain

~gg �kk
~GGk ¼

P
i

~gg �kk;i
~TT�; ð30Þ

where ~gg �kk;i are coset reps. If one operator in a coset is eligible,

then all operators in that coset are eligible.

3.3. The group ~HH~HH

We next need to restrict the search for isotropy subgroups

to a manageably finite number of possibilities. We first form a

set containing every eligible operator in ~GGk, and at least one

operator from every coset in equation (30) having eligible

operators, and then use group multiplication to complete a
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group that we call ~HH. Because the product of two eligible

operators is not necessarily eligible, ~HH may contain operators

which are not eligible. Note that the construction of ~HH is not

unique. We can choose any operator from the eligible cosets in

equation (30). However, we strategically choose them so as to

minimize the total number of operators in ~HH. We also find that

it is always possible to choose operators ~gg so that none of the

matrices ~DDk �kkð~ggÞ depend on k. Other possible choices for ~HH
result in equivalent sets of isotropy subgroups which are

related by translations of the origin along the t axis. In the

ISO(3+1)D tables, we list the generators ~gg of ~HH along with the

matrices ~DDk �kkð~ggÞ for each of the 5508 IRs associated with

incommensurate k vectors. The group of distinct matrices
~DDk �kkð~ggÞ onto which the IR maps the operators ~gg of ~HH is called

the image of ~HH. Among these IRs, we find that only 15

inequivalent images of ~HH arise.

Now consider some isotropy subgroup ~GG0 of ~GG. The

operators in ~GG0 may be divided into two sets: (i) those

contained in ~GGk and (ii) those contained in ~gg �kk
~GGk (if any). By

definition, every operator in ~GG0 must be eligible. Thus, every

operator in set (i) must also be contained in ~HH, since ~HH
contains every eligible operator in ~GGk. The operators in set

(ii), however, may not be contained in ~HH. Here we use the fact

that a translation of the origin of ~GG0 along the t axis changes

the value of � for operators in ~gg �kk
~GGk but not for those in ~GGk.

We can therefore move the origin of ~GG0 so that at least one of

the operators in set (ii) is in ~HH. If we do this, then, by group

multiplication, all of the operators in set (ii) will be in ~HH. In

summary, there exists a translation of the origin along the t

axis such that every operator in ~GG0 is in ~HH. This means that

every isotropy subgroup of ~GGk �kk is equivalent, via an origin

shift along the t axis, to a subgroup of ~HH.

As a final step, we factorize ~HH into left cosets with respect to

the translation group ~TT:

~HH ¼
P

i

~hhi
~TT: ð31Þ

The number of cosets is finite. Since every isotropy subgroup

will contain every element in ~TT, isotropy subgroups will

contain only whole cosets from equation (31). Finding the

non-equivalent isotropy subgroups of ~GGk �kk is now reduced to

finding the non-equivalent sets of cosets from equation (31)

which form groups satisfying the subduction and chain rules.

In Appendix A, we give a detailed example of generating ~HH
and its isotropy subgroups.

3.4. Violation of the chain rule

This is best illustrated by a simple example. Suppose there

are two cosets in equation (31) so that

~HH ¼ ~hh1
~TT þ ~hh2

~TT; ð32Þ

where h1 is the identity operator and

~DDk �kkð
~hh1Þ ¼

1 0

0 1

� �
; ð33Þ

~DDk �kkð
~hh2Þ ¼

1 0

0 �1

� �
; ð34Þ

and every operator in ~TT is mapped onto the identity matrix.

It would appear that there are two isotropy subgroups,
~GG01 ¼ ~hh1

~TT þ ~hh2
~TT ¼ ~HH and ~GG02 ¼ ~hh1

~TT ¼ ~TT with subduction

frequencies ið ~GG01Þ ¼ 1 and ið ~GG02Þ ¼ 2. Both the subduction and

chain rules are satisfied. The order parameter for ~GG01 is

g ¼ ða; 0Þ, and the order parameter for ~GG02 is g ¼ ðb; cÞ, where

a; b; c are arbitrary constants.

Suppose that for ~gg ¼ fðE; 1Þjð0;�Þg we have

~DDk �kkð~ggÞ ¼
cos 2�� sin 2��
� sin 2�� cos 2��

� �
: ð35Þ

Then ~GG001 ¼ ~gg ~HH ~gg�1 is an isotropy subgroup equivalent to ~GG01
with order parameter g ¼ ða cos 2��;�a sin 2��Þ. Since �
can take any value, this order parameter can point in any

direction in two-dimensional representation space. Thus, for

any order parameter ðb; cÞ, there exists some value of � for

which the order parameter of ~GG001 is in the same direction.

Because there does not exist any direction of the order

parameter for which the operators in ~GG02 are the only opera-

tors that satisfy equation (6), ~GG02 is not really an isotropy

subgroup of ~GGk �kk, even though it satisfies the chain rule.

In the example above, ~hh1 belongs to ~GGk and ~hh2 belongs to

~gg �kk
~GGk. The off-diagonal form of the matrix in equation (21) is

diagonal in equation (32) because the similarity transforma-

tion that brings ~DDk �kkð
~hh2Þ to real form also diagonalizes it. The

assignment of operators to ~GGk and ~gg �kk
~GGk can be checked in the

following way. The eigenvalues of ~DDk �kkð~ggÞ ~DDk �kkð
~hh1Þ depend on �

and thus ~hh1 belongs to ~GGk. The eigenvalues of ~DDk �kkð~ggÞ ~DDk �kkð
~hh2Þ

do not depend on � and thus ~hh2 belongs to ~gg �kk
~GGk.

We add an extension to the chain rule: if ~GG0 contains only

operators in ~GGk and if there exists an isotropy subgroup ~GG00

which contains all of the operators in ~GG0 plus some operators

in ~gg �kk
~GGk, we require that ið ~GG0Þ> ið ~GG00Þ þ 1. In the above

example, the extended chain rule is not satisfied and ~GG02 is not

an isotropy subgroup.

3.5. Identifying superspace groups

Once we obtain the operators g in an isotropy subgroup, we

need to identify its (3+1)-dimensional superspace-group

symmetry as being equivalent to one of the 775 such groups

that have been tabulated (Janssen et al., 2004). Let ~GG1 be the

group of operators f~gg1ig in our isotropy subgroup (in the

setting of the parent space group), and let ~GG2 be the group of

operators f~gg2ig (in the standard setting of one of the super-

groups). [ISO(3+1)D contains what we consider to be the

‘standard setting’ of each superspace group.] Our task is to try

to find the matrix S in equation (13) for some one-to-one

mapping of operators in ~GG1 onto operators in ~GG2. If successful,

we have identified the superspace-group symmetry of the

isotropy subgroup.
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Our method for finding S is similar to the algorithm used by

Hatch & Stokes (1985) for identifying the three-dimensional

space-group symmetry of isotropy subgroups for commensu-

rate k vectors. Writing equation (13) as SA2ð~gg2iÞ ¼ A1ð~gg1iÞS

and setting S" ¼ 1 (to preserve the right-handedness of the

coordinate system), we obtain

"2i ¼ "1i; ð36Þ

SRR2i ¼ R1iSR; ð37Þ

SMR2i þM2i ¼ M1iSR þ "1iSM; ð38Þ

SRv2i þ Sv ¼ R1iSv þ v1i; ð39Þ

SMv2i þ �2i þ S� ¼ M1iSv þ "1iS� þ �1i: ð40Þ

Using these equations, we construct an algorithm for finding

the transformation S between two equivalent superspace

groups. If such a transformation cannot be found, then the two

groups are not equivalent.

Step 1. Choose n generating operators f~gg2ig of ~GG2. Find a

mapping of these operators onto n operators f~gg1ig of ~GG1 and

test the one-to-one correspondence ~gg2i $ ~gg1i. From equation

(36), we see that we must choose the elements in ~GG1 such that

"1i ¼ "2i. From equation (37), we see that we must also choose

the elements in G1 such that det R1i ¼ det R2i and

tr R1i ¼ tr R2i. This means that each pair, R1i and R2i, must be

the same physical type of point operator, i.e. twofold rotation,

reflection etc. At this point, we specify the translational parts

v1i; �1i of ~gg1i only to within an integer.

Step 2. Use equation (37) to determine possible integer

values for the matrix SR. We use the same algorithm in this

step as in Hatch & Stokes (1985), and require that det SR ¼ 1

to preserve the right-handedness of the coordinate system.

Step 3. Use equation (38) to determine possible integer

values for the row matrix SM .

Step 4. Use equations (39) and (40) to solve for the column

matrix Sv and the element S�. Since we have only specified v1i

and �1i to within an integer, we must solve these equations

modulo 1. We do this by computing the Smith normal form of

those equations (Grosse-Kunstleve, 1999). This allows us to

determine whether or not there are any solutions and, if there

are, to find the solutions. Using the Smith normal form is an

improvement over the algorithm in Hatch & Stokes (1985).

3.6. IR matrices

We obtained the matrices DkðgÞ from tables in Cracknell et

al. (1979) (CDML), which are extensions of the tables of

Miller & Love (1967). In some cases, the CDML tables contain

multiple IRs which belong to the same k-vector type. Because

the results in our ISO(3+1)D tables are valid for any choice of

parameters �; �; 	, even values outside the first Brillouin zone,

we list only one k vector of each type. As a result, some of the

IRs in CDML do not appear in our tables. For example, for

space group No. 220 I �443d, k vectors along the F and � lines

are of the same type. If the � line is extended beyond the

boundary of the first Brillouin zone, it becomes translationally

equivalent to the F line. Also, the k vectors in the J, B and C

planes are of the same type. Thus, we do not include the F, J or

B IRs in our tables.

Furthermore, for many space groups, CDML omits some k

vectors that are present for the holosymmetric space group of

the same Bravais-lattice type. We include IRs for these k

vectors in our tables. For example, for the cubic I Bravais
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Table 1
Isotropy subgroups of the (3+1)-dimensional superspace extension of space group No. 220 I �443d.

For each IR, we give the order-parameter direction g, the superspace-group symmetry of the subgroup, the basis vectors of the lattice of the subgroup in terms of
the basis vectors of the lattice of the parent group and the origin of the subgroup with respect to the origin of the parent group.

k IR g Subgroup Basis vectors Origin

� ¼ ð0; �; 0Þ �1 ða; 0Þ 122.1 I �442dð00	Þ ð1; 0; 0; 0Þ; ð0; 0;�1; 0Þ; ð0; 1; 0; 0Þ; ð0; 0; 0; 1Þ ð1=4; 3=8; 0; 0Þ
�2 ða; 0Þ 122.1 I �442dð00	Þ ð1; 0; 0; 0Þ; ð0; 0;�1; 0Þ; ð0; 1; 0;�2Þ; ð0; 0; 0; 1Þ ð1=4; 3=8; 0; 1=4Þ
�3�4 ða; 0; b; 0Þ 43.2 Fdd2ð00	Þs0s ð�1; 0; 1; 0Þ; ð1; 0; 1; 0Þ; ð0; 1; 0; 2Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=2; 0Þ

ða; a; b; bÞ 24.2 I212121ð00	Þ00s ð1; 0; 0; 0Þ; ð0; 0;�1; 0Þ; ð0; 1; 0; 0Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=4; 0Þ
ða; b; c; dÞ 5.3 B2ð00	Þs ð1; 0;�1; 0Þ; ð�1; 0; 0; 0Þ; ð0; 1; 0; 0Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=2; 0Þ

� ¼ ð�; �; �Þ �1�1 ða; bÞ 161.1 R3cð00	Þ ð1; 0;�1; 0Þ; ð�1; 1; 0; 0Þ; ð1=2; 1=2; 1=2; 0Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ
�2�2 ða; bÞ 161.1 R3cð00	Þ ð1; 0;�1; 0Þ; ð�1; 1; 0; 0Þ; ð1=2; 1=2; 1=2; 3Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ
�3�3 ða; b; 0; 0Þ 146.2 R3ð00	Þt ð�1; 1; 0; 0Þ; ð0;�1; 1; 0Þ; ð1=2; 1=2; 1=2; 0Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ

ða; b; a; �bbÞ 9.1 Bbð��0Þ ð0; 0;�1; 0Þ; ð1=2; 1=2;�1=2; 0Þ; ð1;�1; 0; 0Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=4; 0Þ
ða; b; �aa; bÞ 9.1 Bbð��0Þ ð0; 0;�1; 0Þ; ð1=2; 1=2;�1=2; 1Þ; ð1;�1; 0; 0Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=4; 0Þ
ða; b; c; dÞ 1.1 P1ð��	Þ ð�1=2; 1=2; 1=2; 0Þ; ð1=2;�1=2; 1=2; 0Þ; ð1=2; 1=2;�1=2; 0Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ

� ¼ ð�; �; 0Þ �1 ða; 0Þ 43.3 F2ddð00	Þ ð0; 0;�1; 0Þ; ð�1; 1; 0; 0Þ; ð1; 1; 0; 0Þ; ð0; 0; 0; 1Þ ð0; 1=4; 0; 0Þ
�2 ða; 0Þ 43.3 F2ddð00	Þ ð0; 0;�1; 0Þ; ð�1; 1; 0; 0Þ; ð1; 1; 0; 2Þ; ð0; 0; 0; 1Þ ð0; 1=4; 0; 0Þ

D ¼ ð1=2; 1=2; 	Þ D1D1 ða; b; 0; 0Þ 9.1 Bbð��0Þ ð0; 0;�1; 0Þ; ð1=2; 1=2;�1=2; 0Þ; ð1;�1; 0; 0Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=4; 0Þ
ða; b; a; �bbÞ 5.4 B2ð0 1

2 	Þ ð1;�1; 0; 0Þ; ð�1; 2; 0; 0Þ; ð0; 0; 1; 0Þ; ð0; 0; 0; 1Þ ð0; 1=4; 0; 0Þ
ða; b; b; aÞ 9.1 Bbð��0Þ ð0; 0; 1; 1Þ; ð�1=2; 1=2; 1=2; 0Þ; ð�1;�1; 0;�1Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ
ða; b; c; dÞ 1.1 P1ð��	Þ ð�1=2; 1=2; 1=2; 0Þ; ð1=2;�1=2; 1=2; 0Þ; ð1=2; 1=2;�1=2; 0Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ

G ¼ ð�; ���; 1Þ G1G2 ða; 0; b; 0Þ 9.1 Bbð��0Þ ð0; 0; 1; 2Þ; ð�1=2; 1=2; 1=2; 0Þ; ð�1;�1; 0;�2Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ
ða; a; b; bÞ 5.1 B2ð��0Þ ð1;�1; 0; 1Þ; ð�1; 2; 0;�1Þ; ð0; 0; 1; 1Þ; ð0; 0; 0; 1Þ ð0; 1=4; 1=4; 0Þ
ða; b; c; dÞ 1.1 P1ð��	Þ ð�1=2; 1=2; 1=2; 0Þ; ð1=2;�1=2; 1=2; 0Þ; ð1=2; 1=2;�1=2; 0Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ

C ¼ ð�; �; 	Þ C1C1 ða; bÞ 9.1 Bbð��0Þ ð0; 0;�1; 0Þ; ð1=2; 1=2;�1=2; 0Þ; ð1;�1; 0; 0Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=4; 0Þ
C2C2 ða; bÞ 9.1 Bbð��0Þ ð0; 0;�1; 0Þ; ð1=2; 1=2;�1=2; 1Þ; ð1;�1; 0; 0Þ; ð0; 0; 0; 1Þ ð�1=4; 1=4; 1=4; 0Þ

A ¼ ð�; �; 0Þ A1 ða; 0Þ 5.1 B2ð��0Þ ð1;�1; 0; 0Þ; ð�1; 2; 0; 0Þ; ð0; 0; 1; 0Þ; ð0; 0; 0; 1Þ ð0; 1=4; 0; 0Þ
GP ¼ ð�; �; 	Þ GP1GP1 ða; bÞ 1.1 P1ð��	Þ ð�1=2; 1=2; 1=2; 0Þ; ð1=2;�1=2; 1=2; 0Þ; ð1=2; 1=2;�1=2; 0Þ; ð0; 0; 0; 1Þ ð0; 0; 0; 0Þ



lattice, the A IRs included for the holosymmetric space group

No. 229 Im�33m are missing in the CDML table of IRs for space

group No. 220 I4�33d, since for I4�33d the A IR is just a special

case of the IR at the general point (GP). We include the A IR

in our tables. As we see in Table 1, in this case, the IR at A

generates a different isotropy subgroup from that of the IR at

the general point.

3.7. Reliability of the tables

We carefully implemented on computer each part of the

algorithm and compared the results with particular examples

that could be hand-calculated. In fact, parts of the algorithm

were developed specifically to address problems discovered in

the testing procedure (for example, the violation of the chain

rule).

Our previous tables of isotropy subgroups (Stokes & Hatch,

1988) are virtually error free, and we expect the ISO(3+1)D

tables to be likewise accurate. The previous tables were

printed in a book. The ISO(3+1)D tables reside on the

internet where we have the possibility to correct errors, if

necessary.

4. Examples: using the tables

4.1. Isotropy subgroups of I �443dI �443d

In Table 1, we extract from ISO(3+1)D the isotropy

subgroups of the (3+1)-dimensional superspace extension of

space group No. 220 I �443d. Complex IRs of type 2 or 3 which

have been brought to real form are denoted by symbols

showing two IRs. For example, �3�4 is the direct sum of �3

and �4 which are complex conjugates of each other. �1�1 is

the direct sum of �1 with itself which is equivalent to its own

complex conjugate.

The first isotropy subgroup in the table is 122.1 I �442dð00	Þ,
which arises from the IR �1 associated with the k vector

� ¼ ð0; �; 0Þ. The incommensurate modulation is along the y

axis ð0; �; 0Þ in the setting of the parent group and along the z

axis ð0; 0; 	Þ in the setting of the superspace group. We see that

the third basis vector is ð0; 1; 0; 0Þ, which means that the z axis

in the superspace-group setting is the y axis in the parent

space-group setting. From the ISO(3+1)D table of IRs, we find

that the generators of ~HH are mapped onto the matrices in

equations (33) and (34). We therefore obtain the same result

as in the example in x3.4: there is one isotropy subgroup, its

order-parameter direction is ða; 0Þ, and the operators in the

isotropy subgroup include all of the operators in ~HH. From the

basis vectors and origin, we obtain the affine transformation

matrix

S ¼

1 0 0 0 1=4

0 0 1 0 3=8

0 �1 0 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBB@

1
CCCCA; ð41Þ

which takes operators in the parent space-group setting into

operators in the superspace-group setting via equation (13).

Table 1 lists four isotropy subgroups for the IR �3�3. From

ISO(3+1)D, we find there are two generators of ~HH, each

mapped onto a four-dimensional matrix. By group multi-

plication, we obtain 36 operators in ~HH. The image of ~HH is

identical to image D36b listed in Stokes & Hatch (1988). This

image appears for 16 different IRs associated with rational k

vectors (e.g. IR H2H3 of space group 147 P�33). In each of those

cases, there are also four isotropy subgroups with the same

order-parameter directions as in Table 1.

4.2. K2SeO4

At 130 K, K2SeO4 undergoes a transition from a commen-

surate phase with crystallographic space group 62 Pmcn to an

incommensurate phase with k vector ð0; 0; 1=3� �Þ and

superspace-group symmetry PPnam
�11ss
¼ Pmcnð00	Þss0 (Perez-

Mato et al., 1984a,b; Cummins, 1990), which is seen to be

equivalent to 62.2 Pmcnð00	Þs00 in the ISO(3+1)D table of

superspace groups. Perez-Mato et al. found that this transition

is driven by a soft-phonon mode belonging to IR �2. This

transition appears in ISO(3+1)D under the three-dimensional

�2 IR of space group 62 Pnma with order-parameter direction

ða; 0; 0Þ.

At 93 K, the k vector locks in at ð0; 0; 1=3Þ so that the �2 IR

produces space-group symmetry 33 P21cn, a result that we also

obtain using the ISOTROPY program.

4.3. TTF–TCNQ

At 54 K, TTF–TCNQ undergoes a transition from a

commensurate phase, space group 14 P21=c, to an incom-

mensurate charge-density-wave phase (known as the MIII

phase), with k vector ð1=2; �; 0Þ, � � 0:295, and superspace-

group symmetry C
P21=c

1�11
¼ 14:3 P21=bð12 0	Þ (Bak & Janssen,

1978; Wang et al., 2003). We find transitions with this symmetry

in ISO(3+1)D under IRs W1 and W2 of space group 14 P21=c.

The IRs W1 and W2 produce modulations which are physically

different but which have the same superspace-group

symmetry. With TTF at the origin in P21=c, W1 produces a

structure where the modulated displacements of the TCNQ

molecules are all in phase in a given (100) plane but the TTF

molecules are not. W2 produces a structure where the modu-

lated displacements of the TTF molecules are all in phase in a

given (100) plane but the TCNQ molecules are not. It is not

clear from experimental data in the literature which of these

two IRs is active in the MIII phase of TTF–TCNQ.

At 49 K, there is another transition to a triclinic incom-

mensurate MII phase with superspace-group symmetry

PP�11
�11
¼ 2:1 P�11ð��	Þ, 1=4<�< 1=2, � � 0:295, 	 � 0. This

symmetry is found in ISO(3+1)D under the IR for the general

point (GP1) of space group 14 P21=c.

4.4. NaNO2

At 436 K, NaNO2 undergoes a transition from a commen-

surate phase, space group 71 Immm, to an incommensurate

phase with k vector � ¼ ð0; 0; 	Þ, 	 � 0:108, and superspace-

group symmetry PI2mm
ss1 ¼ 44:2 Imm2ð00	Þs0s (Ziegler, 1931;

Kucharczyk & Paciorek, 1985; McConnell, 1991). From
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ISO(3+1)D, we see that there are four � IRs, all of which

result in isotropy subgroups with superspace Bravais class

mmmIð00	Þ. In order to obtain Imm2ð00	Þs0s, we must couple

two different IRs. From ISO(3+1)D, we find the generators of

Imm2ð00	Þs0s to be ð�xx1; x2; x3; x4 þ 1=2Þ and ðx1; �xx2; x3; x4Þ.

These are operators in Immmð00	Þs00, the isotropy subgroup

for IR �4, so that Imm2ð00	Þs0s is a subgroup of

Immmð00	Þs00. [Immmð00	Þs00 is also the isotropy subgroup

for IR �3 but with the a1 and a2 axes interchanged so that its

symmetry relative to the parent is actually Immmð00	Þ0s0.] In

order to reduce the symmetry from Immmð00	Þs00 to

Imm2ð00	Þs0s, we need a ferroelectric distortion along the a3

axis. From Table 4 in Stokes & Hatch (1988), we find that the

IR of mmm which is associated with the z component of a

polar vector is ��2 . Therefore, the transition from Immm to

Imm2ð00	Þs0s is accomplished by coupling �4 and ��2 .

APPENDIX A
Example of generating ~HH~HH

As an example of generating the group ~HH, consider the IR A1

of space group 17 P2221. The A point is at k ¼ ð�; 0; 1=2Þ. The

little group of k consists of all space-group elements

containing the point operators x; y; z and x; �yy; �zz. We choose

the coset representative g �kk ¼ ð�xx; y; �zzþ 1=2Þ. Every operator

in G takes k either into k or into �k, so that, in this case,

Gk �kk ¼ G.

The IR matrices DðgÞ are two-dimensional:

Dðx; y; zÞ ¼
1 0

0 1

� �
;

Dðx; �yy; �zzÞ ¼
1 0

0 �1

� �
;

Dð�xx; y; �zzþ 1=2Þ ¼
0 �i

i 0

� �
;

Dð�xx; �yy; zþ 1=2Þ ¼
0 i

i 0

� �

Dðxþ 1; y; zÞ ¼
expði2��Þ 0

0 expð�i2��Þ

� �
;

Dðx; yþ 1; zÞ ¼
1 0

0 1

� �
;

Dðx; y; zþ 1Þ ¼
�1 0

0 �1

� �
:

ð42Þ

We also have from equation (24)

~DDðx; y; z; t þ�Þ ¼
expði2��Þ 0

0 expð�i2��Þ

� �
: ð43Þ

The eigenvalues of Dðx; y; zÞ are 1 and of Dðx; �yy; �zzÞ are �1, so

the eligible operators in ~GGk are ðx; y; z; tÞ, ðx; �yy; �zz; tÞ and

ðx; �yy; �zz; t þ 1=2Þ. The eigenvalues of Dð�xx; y; �zzþ 1=2Þ are �1

and of Dð�xx; �yy; zþ 1=2Þ are �i. Therefore, all of the operators

ð�xx; y; �zzþ 1=2; �tt þ�Þ are eligible, and none of the operators

ð�xx; �yy; zþ 1=2; �tt þ�Þ are eligible.

We generate ~HH from the eligible operators, ðx; y; z; tÞ,

ðx; �yy; �zz; tÞ, ðx; �yy; �zz; t þ 1=2Þ and ð�xx; y; �zzþ 1=2; �ttÞ. We arbitrarily

choose � ¼ 0 for the last generator. Through group multi-

plication, we obtain an additional four operators in ~HH:

ðx; y; z; t þ 1=2Þ, ð�xx; y; �zzþ 1=2; �tt þ 1=2Þ, ð�xx; �yy; zþ 1=2; �ttÞ and

ð�xx; �yy; zþ 1=2; �tt þ 1=2Þ.

We can generate ~HH with two operators: ðx; �yy; �zz; t þ 1=2Þ and

ð�xx; y; �zzþ 1=2; �ttÞ. These two operators are listed in our

ISO(3+1)D table of IRs in terms of the superspace lattice:

ðx1; �xx2; �xx3; �xx3 þ x4 þ 1=2Þ and ð�xx1; x2; �xx3 þ 1=2; �xx4Þ.

The IR A1 is of type 3 because IR A�1 is equivalent to IR A2.

We obtain real matrices from the physically irreducible

representation A1A2 which maps operators g onto matrices

DA1A2 ðgÞ ¼ DA1 ðgÞ 	DA2 ðgÞ. Using equation (23), the

generators of ~HH are thus mapped onto

~DDA1A2 ðx; �yy; �zz; t þ 1=2Þ ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBB@

1
CCCA;

~DDA1A2 ð�xx; y; �zzþ 1=2; �ttÞ ¼

0 �i 0 0

i 0 0 0

0 0 0 i

0 0 �i 0

0
BBB@

1
CCCA:

ð44Þ

We next bring these matrices to real form with a transfor-

mation

S ¼ ð1=2Þ1=2

1 0 1 0

0 1 0 1

i 0 �i 0

0 i 0 �i

0
BB@

1
CCA; ð45Þ

resulting in

S ~DDA1A2 ðx; �yy; �zz; t þ 1=2ÞS�1 ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBB@

1
CCCA;

S ~DDA1A2 ð�xx; y; �zzþ 1=2; �ttÞS�1 ¼

0 0 0 �1

0 0 1 0

0 1 0 0

�1 0 0 0

0
BBB@

1
CCCA:

ð46Þ

Note that the choice of S is not unique. We simply require any

transformation S which brings the IR matrices to real form.

Our computer algorithm found the matrix S shown above.

At this point, we determine that the eight matrices in the

image of ~HH are reducible to block-diagonal form and contain

two copies of the image B8a which we found in our previous

work (Stokes & Hatch, 1988). We find the transformation

S2 ¼ 1=2

�1 1 �1 �1

1 1 1 �1

1 1 �1 1

�1 1 1 1

0
BB@

1
CCA; ð47Þ

which brings the matrices to block-diagonal form with exact

copies of the image B8a as diagonal elements:
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S2S ~DDA1A2 ðx; �yy; �zz; t þ 1=2ÞS�1S�1
2 ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0
BBB@

1
CCCA;

S2S ~DDA1A2 ð�xx; y; �zzþ 1=2; �ttÞS�1S�1
2 ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBB@

1
CCCA:

ð48Þ

Again, the choice of S2 is not unique. Our computer algorithm

found the matrix S2 shown above. We label this image B8aB8a

since it contains two copies of B8a. Among the 5508 IRs in our

ISO(3+1)D tables, we find only 15 inequivalent images of ~HH.

Each of these images can be brought to a form that contains

exact copies of images found in our previous work (Stokes &

Hatch, 1988). The transformation S2 is important since it

brings uniformity to our tables. IRs with the same images give

rise to isotropy subgroups with the same order-parameter

directions.

Using the two generators above, we can easily generate the

eight matrices onto which the IR maps the operators in ~HH and

use equation (6) to determine the isotropy subgroups of ~HH:

½1� ðx; y; z; tÞ; ðx; �yy; �zz; tÞ : g ¼ ða; �aa; b; �bbÞ;

½2� ðx; y; z; tÞ; ðx; �yy; �zz; t þ 1=2Þ : g ¼ ða; a; b; bÞ;

½3� ðx; y; z; tÞ; ð�xx; �yy; �zzþ 1=2; �ttÞ : g ¼ ð0; a; 0; bÞ; ð49Þ

½4� ðx; y; z; tÞ; ð�xx; �yy; �zzþ 1=2; �tt þ 1=2Þ : g ¼ ða; 0; b; 0Þ;

½5� ðx; y; z; tÞ : g ¼ ða; b; c; dÞ:

Subgroups [1] and [2] are equivalent, and subgroups [3] and

[4] are equivalent (via a similarity transformation). Therefore,

there are three non-equivalent isotropy subgroups for the IR

A1A2.
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